首页> 外文OA文献 >Discrete Signal Processing on Graphs: Sampling Theory
【2h】

Discrete Signal Processing on Graphs: Sampling Theory

机译:图上的离散信号处理:采样理论

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We propose a sampling theory for signals that are supported on either directed or undirected graphs. The theory follows the same paradigm as classical sampling theory. We show that the perfect recovery is possible for graph signals bandlimited under the graph Fourier transform, and the sampled signal coefficients form a new graph signal, whose corresponding graph structure is constructed from the original graph structure, preserving frequency contents. By imposing a specific structure on the graph, graph signals reduce to finite discrete-time signals and the proposed sampling theory works reduces to classical signal processing. We further establish the connection to frames with maximal robustness to erasures as well as compressed sensing, and show how to choose the optimal sampling operator, how random sampling works on circulant graphs and Erdos-R ˝ enyi graphs, ´ and how to handle full-band graph signals by using graph filter banks. We validate the proposed sampling theory on the simulated datasets of Erdos-R ˝ enyi graphs and small-world graphs, and a ´ real-world dataset of online blogs. We show that for each case, the proposed sampling theory achieves perfect recovery with high probability. Finally, we apply the proposed sampling theory to semi-supervised classification of online blogs and digit images, where we achieve similar or better performance with fewer labeled samples compared to the previous work.
机译:我们为有向图或无向图支持的信号提出了一种采样理论。该理论遵循与经典抽样理论相同的范例。我们证明了在图傅立叶变换下带宽受限的图信号有可能实现完美的恢复,并且采样的信号系数形成一个新的图信号,其对应的图结构由原始图结构构造而成,并保留了频率内容。通过在图上施加特定的结构,图信号减少为有限的离散时间信号,而所提出的采样理论工作则减少为经典信号处理。我们进一步建立与帧之间的连接,以最大的鲁棒性进行擦除和压缩感知,并展示如何选择最佳采样算子,如何在循环图和Erdos-R˝enyi图上使用随机采样,以及如何处理全图。通过使用图滤波器组来获得带图信号。我们在Erdos-R˝enyi图和小世界图的模拟数据集以及在线博客的“现实世界”数据集上验证了提出的抽样理论。我们表明,对于每种情况,提出的抽样理论均以很高的概率实现了完美的恢复。最后,我们将提出的抽样理论应用于在线博客和数字图像的半监督分类中,与以前的工作相比,在更少的标签样本下,我们可以获得类似或更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号